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The results of numerical simulations indicate that deterministic walks with inverse-square power-law scaling
are a robust emergent property of predators that use chemotaxis to locate randomly and sparsely distributed
stationary prey items. It is suggested that chemotactic destructive foraging accounts for the apparent Lévy
flight movement patterns of Oxyrrhis marina microzooplankton in still water containing prey items. This
challenges the view that these organisms are executing an innate optimal Lévy flight searching strategy. Crucial
for the emergence of inverse-square power-law scaling is the tendency of chemotaxis to occasionally cause
predators to miss the nearest prey item, an occurrence which would not arise if prey were located through the
employment of a reliable cognitive map or if prey location were visually cued and perfect.
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I. INTRODUCTION

Over recent years, there has been an accumulation of evi-
dence from a variety of experimental, theoretical, and field
studies that many organisms have Lévy flight �LF� move-
ment patterns when they are searching for resources �1–8�.
Here and throughout, and in common with animal movement
literature, the phrase “LF movement pattern” is used to refer
to movement patterns either deterministic or stochastic that
have power-law scaling characteristics. The analysis and in-
terpretation of animal movement data is, however, not
wholly straightforward and some of the analyses claiming
Lévy flight patterns have recently been called into question
�9�. The issue is hotly contested, and debate about the reli-
ability of methods used to test for the presence of power-law
scaling may continue for some time �9,10�. Central to a res-
olution of the issue is the identification of underlying pro-
cesses that can give rise to LF movement patterns. The key
to prediction and understanding does, after all, lie in the
elucidation of mechanisms underlying the observed patterns
�11�. Progress in this direction is being made. For example,
Boyer et al. �12� showed that LF movement patterns can
arise with destructive predators whose location rule is to
minimize the quantity lij /ki, where lij is the distance separat-
ing randomly located food items, i and j, whose sizes, ki, are
power-law distributed. In a destructive search, food items
once visited are depleted. The mechanism identified by
Boyer et al. �12� may account for the LF movement patterns
of spider monkeys �13�. Santos et al. �14� consequently
showed that LF movement patterns can arise with destructive
predators whose location rule is always to travel to the near-
est prey item when their movements are confined to a land-
scape consisting of a striplike region. More recently, it has
been suggested that the LF movement patterns of jackals �3�
and the fractal movement patterns of beetles �15� can be
attributed to conspecific odor trail avoidance �a behavior de-
signed to avoid locations previously traversed by individuals

of the same species, a trait first identified in carabid beetles
�16�� �17�. The LF patterns of airborne male moths �18� may
also have an olfactory basis and stem from a naive response
to turbulent fluctuations in the concentrations of attractive
odor dispersing within the atmospheric boundary layer �19�.
Additionally, it has been conjectured that LF movement pat-
terns in Drosophila fruit flies have a neurological basis �5�.
This convergence of behaviors along such different evolu-
tionary pathways is not surprising given the energetic effi-
ciencies that Lévy flight movement patterns confer.

Here we report on a novel olfactory mechanism for the
occurrence of LF movement patterns. Through the use of
numerical simulations, we show that deterministic walks
with inverse-square power-law scaling are an emergent prop-
erty of predators that use chemotaxis to locate randomly and
sparsely distributed stationary prey items. In this scenario,
the prey act as sources of chemoattractant and the attractant
diffuses throughout the surrounding landscape. Upon arriv-
ing at a prey item, the predator destroys that source of
chemoattractant. It is suggested that this mechanism ac-
counts for the ��2 LF movement patterns observed in Ox-
yrrhis marina microzooplankton in still water containing
sparsely and randomly distributed prey �4�. O. marina micro-
zooplankton use chemotaxis to locate their prey �20� and
forage destructively. The model and analysis of the simula-
tion is presented in the next section, and is followed by a
discussion.

II. MODEL FORMULATION AND THE EMERGENCE
OF LF MOVEMENT PATTERNS

Concentrations of chemoattractant, c, undergo Brownian
diffusion and evolve in time, t, and two-dimensional space,
x ,y, according to the standard diffusion equation

�c

�t
= D

�2c

�x2 + D
�2c

�y2 + q�x,y� , �1�

where D is the diffusivity of the chemoattractant and q�x ,y�
are the release rates of chemoattractant from randomly dis-
tributed sources �prey items�. A discrete form of Eq. �1� was
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solved numerically. Forward differencing was used for the
time derivatives, and central differencing was used for the
spatial derivatives. At the boundaries of the computational
domain �i.e., the “landscape” containing the prey�, concen-
trations of chemoattractant vanish so that c=0. Model pre-
dictions do not depend sensitively on the boundary condition
c=0 because all analyses were restricted to movements that
did not approach the boundaries of the computational do-
main.

Unless stated otherwise, the numerical simulations were
performed on landscapes of size 200�x�200�y, initially
containing 1000 randomly located prey items that first be-
came active at the start of the search and which release
chemoattractant at a constant rate, q=�t−1. Here �t, �x,
�y=�x are the sizes of the temporal-spatial steps used in the
numerical integration of the discrete form of the diffusion
equation �1�. The diffusivity D=0.1�x2�t−1. The distribution
of prey items is the only source of randomness. Predators use
a purely deterministic algorithm and simply move in the di-
rection in which the gradient of chemoattractant is largest. A
prey item is located when the predator enters the computa-
tional cell containing the prey item. The movement patterns
considered here do not represent the continuous movements
of a predator but instead are formed from straight-line
“moves” that join together successive prey items located by
the predator. These locations, in contrast with the locations
of other much smaller changes in direction, are biologically
significant.

An example of a movement pattern of a predator using
chemotaxis to locate randomly distributed prey items is
shown in Fig. 1�a�. The predator starts from the center of the
landscape and searches for a time 2�104�t. Around 35% of
the prey items are located within this time span. Chemotaxis
tends to direct a predator to the nearest prey item �Fig. 1�a��.
Occasionally, however, attraction to a local cluster of prey
can be greater than to the single nearest prey item, and in
these instances the nearest prey is not visited by the predator
but instead remains a target for a later stage in the search.
The movement patterns of these predators are therefore fun-
damentally different from predators whose location rule is
always to travel to the nearest prey item �Fig. 1�b��, and this
crucial distinction leads to scaling behaviors that are differ-
ent from those identified by Santos et al. �14�. It is evident
from Fig. 1�a� that frequently occurring but relatively short
moves between successive prey items are punctuated by

more rarely occurring longer moves. The distribution of
move lengths of chemotactic predators can, in fact, be accu-
rately represented by an inverse-square power-law �Fig.
2�a��. This distribution, Pl, was obtained by ensemble-
averaging over 50 searches, the sizes of the data collection
bins were logarithmically distributed, and the numbers of
straight-line movements have been normalized by the bin
sizes. The linear regression of log Pl on log l gives a best-fit
exponent −2.1�0.05 �r2=0.92�. The inset shows the same
distribution on log-linear scales. The high tail is clearly non-
exponential. The emergence of inverse-square power law
scaling is highly significant because it is often taken to be
indicative of the presence �=2 LF in animal movement pat-
terns. Crucial for the emergence of an inverse-square power
law by this mechanism is the tendency of chemotaxis to
occasionally cause predators to miss the nearest prey item, an
occurrence that would not arise if searching were visually

FIG. 1. �a� An example movement pattern of a predator using
chemotaxis to locate randomly distributed prey items. �b� An ex-
ample movement pattern of a predator whose location rule is always
to move to the nearest prey item.

FIG. 2. �a� The distribution Pl of the move lengths l of chemo-
tactic predators. �b� An example of the root-mean-square value of
the running sum, F, for a chemotactic predator movement pattern.
�c� Fractal scaling properties of a chemotactic predator movement
pattern revealed by the box-counting method and by the dividers
method �inset�.
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cued and perfect, or if reliable cognitive maps were utilized
�12�. In the latter case, movement patterns are Gaussian �12�.

Further evidence for the emergence of power-law scaling
characteristics from chemotaxis comes from the results of a
“random-walk” analysis, which can detect the presence of
scale-free characteristics. In this analysis, the time series u�t�
of the numbers of prey items located �i.e., the number of
turning points of biological significance in the movement
pattern� within time intervals t to t+�t are treated as incre-
ments in a random walk where the net “displacement” is just
the running sum n�t�=�i=0

N=t/�tu�i�. An important statistical
property characterizing the walk is the root-mean-square
fluctuation of the displacement F�t�=�

Š��n�t�− ��n�t�	�2
‹,

where �n�t�
n�t0+ t�−n�t0� and where the angular brackets
denote an ensemble over all possible times t0. If the values of
u�t� are completely uncorrelated and behave like “white
noise,” then the root-mean-square displacement F� t�, where
�= 1

2 . Markov process also gives rise to �= 1
2 for sufficiently

large t. Time series with long-range correlations having no
characteristic scale are, however, characterized by F� t� with
�� 1

2 �21�. Figure 2�b� shows that chemotaxis is character-
ized by �=0.61�0.09 �the error is found by estimating � for
50 different time series via least-squares regressions of log F
on log t for times t between 101�t and 103�t; a predator can
locate approximately 100 prey items within this time span�.
This scaling implies that long term power-law correlations
exist in the motions of a chemotactic predator. The scaling
differs from that of finitely long �=2 LF movement patterns,
which are characterized by �=0.80�0.05 �1�. The distinc-
tion may arise because the speed of the predator is not con-
stant so that distances traveled and times of flight �move-
ments between consecutively located prey items� are not
strictly interchangeable. Predators can, for instance, become
temporally trapped close to a recently extinguished prey item
and only escape when locally produced concentrations of
chemoattractant have diffused away. This trapping effect
may also account, at least in part, for the presence of
Brownian-like motions at short times �Fig. 2�b��. The posi-
tions of prey items located during a well-developed search
do, however, have fractal dimension, D=1.15�0.07 �Fig.
2�c��, and this speed-independent quality is compatible with
that of finitely long �=2 LF movement patterns �6,7�. Figure
2�c� shows the average number, nbox, of boxes required to
enclose the prey items that were located by a chemotactic
predator between times 5�103�t and 1�104�t as a func-
tion of the box size, lbox �measured in units of �x�. A power-
law relationship of the form nbox� lbox

−D would be indicative of
a scale-free characteristic with fractal dimension D, and here,
a linear least-squares fit shows that D=1.15 �r2=0.89�. The
inset shows the presence of fractal scaling as revealed by the
dividers method. In this method, the number of steps, nl,
taken by dividers of length l when moving along a move-
ment path is calculated. A power-law relationship of the form
nl� l−D would be indicative of a scale-free characteristic with
fractal dimension D, and here, a linear least-squares fit shows
that D=1.4 �r2=0.98�.

The results of numerical simulations indicate that the
emergence of deterministic walks with inverse-square
power-law scaling from chemotactic destructive foraging is
not dependent on the geometry and the dimensionality of the

landscape within which the predator moves. This contrasts
with predators whose movement rule is always to move to
the near prey item. In this case, inverse-square power-law
scaling is only attained in narrow strip geometries �14�. The
emergence of inverse-square power-law scaling may also be
insensitive to both the distribution of source strengths �Fig.
3�a�� and the age of the sources �Fig. 3�b��, and in this sense
may be a robust characteristic of chemotactic destructive for-
aging. Power-law scaling does, however, become less appar-
ent in the later stages of the search when the density of the
remaining prey items is low �Fig. 3�c��. Nevertheless,
inverse-square power-law scaling is present and becomes
evident when ensemble-averaging over many searches �Fig.
3�d��. The results of numerical simulations also indicate that
the emergence of inverse-square power-law scaling does not
depend sensitively on the speed of the predator. This may be
because the trapping that arises temporally in the vicinity of
a recently consumed prey item is the rate-limiting process.
Even when traveling at very high speeds, concentrations of
chemoattractant may become relevant far from prey items
before the predator can move away from the first consumed
prey item. Without this trapping, it is likely that high-speed
predators would always move to the nearest prey item.

Power law scaling does not arise when consumed prey
items are replaced by new prey items that appear at random
locations so that the total number of prey items within the
landscape remains constant. The emergence of power-law
scaling is therefore dependent on a continual depletion of
prey numbers. This is realistic when foraging is destructive
and must arise in the experimental studies of microzooplank-
ton �4� that motivated the current theoretical study. It is also
crucial that prey items are randomly distributed because a
chemotactic predator moves sequentially between regularly
spaced prey and because power-law scaling is not evident
when prey items are patchily distributed �Fig. 4�. In the pres-
ence of patchily distributed prey, the movement patterns of
chemotactic predators are akin to optimal adaptive LF
searching patterns �22,23� that are comprised of straight-line
movements between patches �corresponding to LF move-
ment patterns with �→1� and Brownian movement patterns
within patches. It is evident that in chemotactic foraging, the
imposition of a behavioral rule like the “giving up distance”
is not required to invoke patch departure prior to complete
depletion of local prey items �Fig. 4�. This incomplete deple-
tion can lead to the predator revisiting a patch.

III. DISCUSSION

The results of numerical simulations indicate that deter-
ministic walks with inverse-square power-law scaling are an
emergent property of destructive foragers employing chemo-
tactic gradient following to locate randomly and sparsely dis-
tributed prey items. Inverse-power square-law of movement
lengths was evident over about two decades �Fig. 2�a�� and
was supported by power-law scaling of a time-series analysis
of the turning points extending over about two decades �Fig.
2�b��, and by fractal scaling over about one decade �Fig.
2�c��. The walks are deterministic rather than stochastic be-
cause they are determined a priori by the particular arrange-
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ment of prey items within the landscape. Their power-law
scaling and fractal properties are, nevertheless, indistinguish-
able from that of random �=2 LF movement patterns.

Chemotactic destructive foraging may underlie the appar-
ent presence of ��2 LF movement patterns of microzoop-
lankton M. Oxyrrhis in still water containing prey that have
been observed in a Palmer cell �18 mm diameter and 0.4 mm

deep�, a pseudo-two-dimensional landscape akin to that in-
vestigated in the numerical simulations �4�. This possibility
reinforces the view that the movement patterns microzoop-
lankton do, indeed, exhibit inverse-square power-law scaling
but it also challenges the notion that this scaling stems from
the execution of an innate, evolved LF searching strategy.
The issue can be resolved by careful reexamination of the
high tail of the distribution of the move lengths. In chemot-
actic gradient following the high-tail is an inverse-square
power-law while in a LF search it will be exponential, due to
LF movement patterns being randomly truncated following
detection of prey items. Alternatively the issue would be re-
solved if starved microzooplankton were found to have LF
movement patterns in the absence of prey items �sources of
chemoattractant� because that would rule out chemotactic de-
structive foraging as being the underlying mechanism.

The foregoing analysis may provide new insights into the
foraging behaviors of microzooplankton. For instance, when
confronted with a variety of chemical stimuli �i.e., from a
mixed-prey assemblage�, M. Oxyrrhis seem unable to discern
the difference between cues that originate from high and
poor quality �or even toxic� prey items �20�. Our analysis
indicates that the poor quality prey items could serve as
markers for locations at which microzooplankton must
change direction if they are to execute pseudorandom �=2
LF searching patterns for the location of high quality food
items. This strategy would be effective even when attempting
to locate prey items that themselves are not sources of
chemoattractant. Such movement patterns constitute an opti-
mal LF searching strategy for the location of sparsely and
randomly distributed prey items �24�. The foregoing analysis

FIG. 3. �a� An example of the distribution of the move lengths of a chemotactic predator moving within a landscape containing prey items
having chemoattractant release rates, q, randomly distributed between 0 and �t−1. �b� An example of the distribution of the move lengths of
a predator moving within a landscape containing prey items that first began emitting chemoattractant at times randomly and uniformly
distributed between the start of the search and 1�104�t before its commencement. �c� The distribution of move lengths for the first and
second halves of a search, and for the total search. �d� An example of the ensemble distribution of move lengths of 20 chemotactic predators
moving within 20 different landscapes during the second halves of their searches.

FIG. 4. An example movement pattern of a predator using
chemotaxis to locate patchily distributed prey items. The landscape
initially contains 20 randomly located patches each comprised of 20
randomly distributed prey items.
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may also provide new insights into the movement patterns of
subterranean invertebrates. This area of research has received
little attention but is of considerable importance when at-
tempting to understand and to predict the important role that
invertebrates play in soil ecosystems by mediating nutrient
turnover, inflicting damage on crops, benefiting plants by
consuming pathogenic microorganisms, and by transporting
otherwise relatively immobile organisms through the soil. It
has long been recognized that chemotactic gradient follow-
ing is the primary means by which soil dwelling organisms
locate hosts and prey. The subterranean hexapod collembola,
Protaphorura armata, for instance, utilizes chemical cues to

discriminate among food sources �25,26�. These observations
together with our theoretical analysis suggest that some sub-
terranean invertebrates have movement patterns akin to �
=2 LF. This possibility has not been explored and warrants
investigation.
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